Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113794, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363677

RESUMO

Acute myeloid leukemia (AML) progression is influenced by immune suppression induced by leukemia cells. ZEB1, a critical transcription factor in epithelial-to-mesenchymal transition, demonstrates immune regulatory functions in AML. Silencing ZEB1 in leukemic cells reduces engraftment and extramedullary disease in immune-competent mice, activating CD8 T lymphocytes and limiting Th17 cell expansion. ZEB1 in AML cells directly promotes Th17 cell development that, in turn, creates a self-sustaining loop and a pro-invasive phenotype, favoring transforming growth factor ß (TGF-ß), interleukin-23 (IL-23), and SOCS2 gene transcription. In bone marrow biopsies from AML patients, immunohistochemistry shows a direct correlation between ZEB1 and Th17. Also, the analysis of ZEB1 expression in larger datasets identifies two distinct AML groups, ZEB1high and ZEB1low, each with specific immunological and molecular traits. ZEB1high patients exhibit increased IL-17, SOCS2, and TGF-ß pathways and a negative association with overall survival. This unveils ZEB1's dual role in AML, entwining pro-tumoral and immune regulatory capacities in AML blasts.


Assuntos
Leucemia Mieloide Aguda , Células Th17 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Proliferação de Células , Fator de Crescimento Transformador beta , Homeobox 1 de Ligação a E-box em Dedo de Zinco
2.
Front Cell Dev Biol ; 11: 1165308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287455

RESUMO

High-risk relapsed/refractory adult Philadelphia-negative (Ph-) B-cell acute lymphoblastic leukemia (B-ALL) is a great challenge due to limited possibilities to achieve and maintain a complete response. This also applies to cases with extramedullary (EM) involvement that have poor outcomes and no accepted standard therapeutic approaches. The incidence of EM localization in relapsed/refractory B-ALL is poorly investigated: data on patients treated with blinatumomab reported a 40% rate. Some responses were reported in EM patients with relapsed/refractory B-ALL treated with inotuzumab ozogamicin or CAR-T. However, molecular mechanisms of response or refractoriness are usually investigated neither at the medullary nor at EM sites. In the complex scenario of pluri-relapsed/refractory B-ALL patients, new target therapies are needed. Our analysis started with the case of an adult pluri-relapsed Ph- B-ALL patient, poorly sensitive to inotuzumab ozogamicin, donor lymphocyte infusions, and blinatumomab in EM disease, who achieved a durable/complete response after treatment with the BCL2-inhibitor venetoclax. The molecular characterization of medullary and EM samples revealed a tyrosine kinase domain JAK1 mutation in the bone marrow and EM samples at relapse. By comparing the expression level of BCL2- and JAK/STAT pathway-related genes between the patient samples, 136 adult JAK1 wt B-ALL, and 15 healthy controls, we identified differentially expressed genes, including LIFR, MTOR, SOCS1/2, and BCL2/BCL2L1, that are variably modulated at diverse time points and might explain the prolonged response to venetoclax (particularly in the EM site, which was only partially affected by previous therapies). Our results suggest that the deep molecular characterization of both medullary and EM samples is fundamental to identifying effective and personalized targeted therapies.

3.
Genes (Basel) ; 14(4)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37107676

RESUMO

Adenocarcinoma of the esophagus (EAC) and gastroesophageal junction (GEJ-AC) is associated with poor prognosis, treatment resistance and limited systemic therapeutic options. To deeply understand the genomic landscape of this cancer type, and potentially identify a therapeutic target in a neoadjuvant chemotherapy non-responder 48-year-old man, we adopted a multi-omic approach. We simultaneously evaluated gene rearrangements, mutations, copy number status, microsatellite instability and tumor mutation burden. The patient displayed pathogenic mutations of the TP53 and ATM genes and variants of uncertain significance of three kinases genes (ERBB3, CSNK1A1 and RPS6KB2), along with FGFR2 and KRAS high copy number amplification. Interestingly, transcriptomic analysis revealed the Musashi-2 (MSI2)-C17orf64 fusion that has never been reported before. Rearrangements of the RNA-binding protein MSI2 with a number of partner genes have been described across solid and hematological tumors. MSI2 regulates several biological processes involved in cancer initiation, development and resistance to treatment, and deserves further investigation as a potential therapeutic target. In conclusion, our extensive genomic characterization of a gastroesophageal tumor refractory to all therapeutic approaches led to the discovery of the MSI2-C17orf64 fusion. The results underlie the importance of deep molecular analyses enabling the identification of novel patient-specific markers to be monitored during therapy or even targeted at disease evolution.


Assuntos
Adenocarcinoma , Masculino , Humanos , Pessoa de Meia-Idade , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Junção Esofagogástrica/metabolismo , Junção Esofagogástrica/patologia , Proteínas de Ligação a RNA/genética
4.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37108089

RESUMO

Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) can be considered as a spectrum of the same disease entity, representing one of the most common adult soft tissue sarcoma (STS) of the extremities. While MFS is rarely metastasizing, it shows an extremely high rate of multiple frequent local recurrences (50-60% of cases). On the other hand, UPS is an aggressive sarcoma prone to distant recurrence, which is correlated to a poor prognosis. Differential diagnosis is challenging due to their heterogeneous morphology, with UPS remaining a diagnosis of exclusion for sarcomas with unknown differentiation lineage. Moreover, both lesions suffer from the unavailability of diagnostic and prognostic biomarkers. In this context, a genomic approach combined with pharmacological profiling could allow the identification of new predictive biomarkers that may be exploited for differential diagnosis, prognosis and targeted therapy, with the aim to improve the management of STS patients. RNA-Seq analysis identified the up-regulation of MMP13 and WNT7B in UPS and the up-regulation of AKR1C2, AKR1C3, BMP7, and SGCG in MFS, which were confirmed by in silico analyses. Moreover, we identified the down-regulation of immunoglobulin genes in patient-derived primary cultures that responded to anthracycline treatment compared to non-responder cultures. Globally, the obtained data corroborated the clinical observation of UPS as an histotype refractory to chemotherapy and the key role of the immune system in determining chemosensitivity of these lesions. Moreover, our results confirmed the validity of genomic approaches for the identification of predictive biomarkers in poorly characterized neoplasms as well as the robustness of our patient-derived primary culture models in recapitulating the chemosensitivity features of STS. Taken as a whole, this body of evidence may pave the way toward an improvement of the prognosis of these rare diseases through a treatment modulation driven by a biomarker-based patient stratification.


Assuntos
Fibrossarcoma , Histiocitoma Fibroso Maligno , Sarcoma , Neoplasias de Tecidos Moles , Adulto , Humanos , Sarcoma/diagnóstico , Sarcoma/tratamento farmacológico , Sarcoma/genética , Neoplasias de Tecidos Moles/patologia , Extremidades/patologia , Genômica
5.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555431

RESUMO

BRCA1 and BRCA2 are the most frequently mutated genes in ovarian cancer (OC) crucial both for the identification of cancer predisposition and therapeutic choices. However, germline variants in other genes could be involved in OC susceptibility. We characterized OC patients to detect mutations in genes other than BRCA1/2 that could be associated with a high risk of developing OC and permit patients to enter the most appropriate treatment and surveillance program. Next-generation sequencing analysis with a 94-gene panel was performed on germline DNA of 219 OC patients. We identified 34 pathogenic/likely pathogenic variants in BRCA1/2 and 38 in other 21 genes. The patients with pathogenic/likely pathogenic variants in the non-BRCA1/2 genes mainly developed OC alone compared to the other groups that also developed breast cancer or other tumors (p = 0.001). Clinical correlation analysis showed that the low-risk patients were significantly associated with platinum sensitivity (p < 0.001). Regarding PARP inhibitors (PARPi) response, the patients with pathogenic mutations in the non-BRCA1/2 genes had worse PFS and OS. Moreover, a statistically significantly worse PFS was found for every increase of one thousand platelets before PARPi treatment. To conclude, knowledge about molecular alterations in genes beyond BRCA1/2 in OC could allow for more personalized diagnostic, predictive, prognostic, and therapeutic strategies for OC patients.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Predisposição Genética para Doença , Proteína BRCA1/genética , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Genes BRCA2 , Mutação em Linhagem Germinativa , Neoplasias da Mama/genética , Sequenciamento de Nucleotídeos em Larga Escala
6.
Cancers (Basel) ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35625958

RESUMO

Molecular characterization of advanced non-small-cell lung cancer (NSCLC) is mandatory before any treatment decision making. Next-generation sequencing (NGS) approaches represent the best strategy in this context. The turnaround time for NGS methodologies and the related costs are becoming more and more adaptable for their use in clinical practice. In our study, we analyzed a case series of young (under 65 years old) NSCLC patients with a wide NGS gene panel assay. The most frequent altered genes were TP53 (64.55%), followed by KRAS (44.1%), STK11 (26.9%), CDKN2A (21.5%), CDKN2B (14.0%), EGFR (16.1%), and RB1 (10.8%). Tumor mutational burden (TMB) was also evaluated. Considering the cut-off of 10 mut/Mb, 62 (68.9%) patients showed a TMB < 10 mut/Mb, whereas 28 (31.1%) showed a TMB ≥ 10 mut/Mb. STK11 and KRAS mutations were significantly associated with a higher TMB (p = 0.019 and p = 0.004, respectively). Conversely, EGFR and EML4-ALK alterations were more frequently found in tumors with low TMB (p = 0.019 and p < 0.001, respectively). We compared results obtained from this approach with those obtained from a single or few genes approach, observing perfect concordance of the results.

8.
Leukemia ; 35(10): 2813-2826, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34193978

RESUMO

Although targeting of cell metabolism is a promising therapeutic strategy in acute myeloid leukemia (AML), metabolic dependencies are largely unexplored. We aimed to classify AML patients based on their metabolic landscape and map connections between metabolic and genomic profiles. Combined serum and urine metabolomics improved AML characterization compared with individual biofluid analysis. At intracellular level, AML displayed dysregulated amino acid, nucleotide, lipid, and bioenergetic metabolism. The integration of intracellular and biofluid metabolomics provided a map of alterations in the metabolism of polyamine, purine, keton bodies and polyunsaturated fatty acids and tricarboxylic acid cycle. The intracellular metabolome distinguished three AML clusters, correlating with distinct genomic profiles: NPM1-mutated(mut), chromatin/spliceosome-mut and TP53-mut/aneuploid AML that were confirmed by biofluid analysis. Interestingly, integrated genomic-metabolic profiles defined two subgroups of NPM1-mut AML. One was enriched for mutations in cohesin/DNA damage-related genes (NPM1/cohesin-mut AML) and showed increased serum choline + trimethylamine-N-oxide and leucine, higher mutation load, transcriptomic signatures of reduced inflammatory status and better ex-vivo response to EGFR and MET inhibition. The transcriptional differences of enzyme-encoding genes between NPM1/cohesin-mut and NPM1-mut allowed in silico modeling of intracellular metabolic perturbations. This approach predicted alterations in NAD and purine metabolism in NPM1/cohesin-mut AML that suggest potential vulnerabilities, worthy of being therapeutically explored.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Dano ao DNA/genética , Leucemia Mieloide Aguda/genética , Mutação/genética , Proteínas Nucleares/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatina/genética , Feminino , Genômica/métodos , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Nucleofosmina , Prognóstico , Adulto Jovem , Coesinas
9.
Front Oncol ; 11: 684396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150648

RESUMO

Adrenomedullin (ADM) is a hypotensive and vasodilator peptide belonging to the calcitonin gene-related peptide family. It is secreted in vitro by endothelial cells and vascular smooth muscle cells, and is significantly upregulated by a number of stimuli. Moreover, ADM participates in the regulation of hematopoietic compartment, solid tumors and leukemias, such as acute myeloid leukemia (AML). To better characterize ADM involvement in AML pathogenesis, we investigated its expression during human hematopoiesis and in leukemic subsets, based on a morphological, cytogenetic and molecular characterization and in T cells from AML patients. In hematopoietic stem/progenitor cells and T lymphocytes from healthy subjects, ADM transcript was barely detectable. It was expressed at low levels by megakaryocytes and erythroblasts, while higher levels were measured in neutrophils, monocytes and plasma cells. Moreover, cells populating the hematopoietic niche, including mesenchymal stem cells, showed to express ADM. ADM was overexpressed in AML cells versus normal CD34+ cells and in the subset of leukemia compared with hematopoietic stem cells. In parallel, we detected a significant variation of ADM expression among cytogenetic subgroups, measuring the highest levels in inv(16)/t(16;16) or complex karyotype AML. According to the mutational status of AML-related genes, the analysis showed a lower expression of ADM in FLT3-ITD, NPM1-mutated AML and FLT3-ITD/NPM1-mutated cases compared with wild-type ones. Moreover, ADM expression had a negative impact on overall survival within the favorable risk class, while showing a potential positive impact within the subgroup receiving a not-intensive treatment. The expression of 135 genes involved in leukemogenesis, regulation of cell proliferation, ferroptosis, protection from apoptosis, HIF-1α signaling, JAK-STAT pathway, immune and inflammatory responses was correlated with ADM levels in the bone marrow cells of at least two AML cohorts. Moreover, ADM was upregulated in CD4+ T and CD8+ T cells from AML patients compared with healthy controls and some ADM co-expressed genes participate in a signature of immune tolerance that characterizes CD4+ T cells from leukemic patients. Overall, our study shows that ADM expression in AML associates with a stem cell phenotype, inflammatory signatures and genes related to immunosuppression, all factors that contribute to therapy resistance and disease relapse.

11.
BMC Bioinformatics ; 22(1): 60, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563206

RESUMO

BACKGROUND: Current high-throughput technologies-i.e. whole genome sequencing, RNA-Seq, ChIP-Seq, etc.-generate huge amounts of data and their usage gets more widespread with each passing year. Complex analysis pipelines involving several computationally-intensive steps have to be applied on an increasing number of samples. Workflow management systems allow parallelization and a more efficient usage of computational power. Nevertheless, this mostly happens by assigning the available cores to a single or few samples' pipeline at a time. We refer to this approach as naive parallel strategy (NPS). Here, we discuss an alternative approach, which we refer to as concurrent execution strategy (CES), which equally distributes the available processors across every sample's pipeline. RESULTS: Theoretically, we show that the CES results, under loose conditions, in a substantial speedup, with an ideal gain range spanning from 1 to the number of samples. Also, we observe that the CES yields even faster executions since parallelly computable tasks scale sub-linearly. Practically, we tested both strategies on a whole exome sequencing pipeline applied to three publicly available matched tumour-normal sample pairs of gastrointestinal stromal tumour. The CES achieved speedups in latency up to 2-2.4 compared to the NPS. CONCLUSIONS: Our results hint that if resources distribution is further tailored to fit specific situations, an even greater gain in performance of multiple samples pipelines execution could be achieved. For this to be feasible, a benchmarking of the tools included in the pipeline would be necessary. It is our opinion these benchmarks should be consistently performed by the tools' developers. Finally, these results suggest that concurrent strategies might also lead to energy and cost savings by making feasible the usage of low power machine clusters.


Assuntos
Biologia Computacional , Sequenciamento do Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional/métodos , Sequenciamento do Exoma/normas , Fluxo de Trabalho
12.
Cell Transplant ; 30: 963689721991477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33522308

RESUMO

TRANSLATIONAL RELEVANCE: No prophylactic treatments for COVID-19 have been clearly proven and found. In this pandemic context, cancer patients constitute a particularly fragile population that would benefit the best from such treatments, a present unmet need. TMPRSS2 is essential for COVID-19 replication cycle and it is under androgen control. Estrogen and androgen receptor dependent cues converge on TMPRSS2 regulation through different mechanisms of action that can be blocked by the use of hormonal therapies. We believe that there is enough body of evidence to foresee a prophylactic use of hormonal therapies against COVID-19 and this hypothesis can be easily tested on cohorts of breast and prostate cancer patients who follow those regimens. In case of pandemic, if the protective effect of hormonal therapies will be proven on cancer patients, the use of specific hormonal therapies could be extended to other oncological groups and to healthy individuals to decrease the overall risk of infection by SARS-CoV-2.Given the COVID-19 coronavirus emergency, a special focus is needed on the impact of this rapidly spreading viral infection on cancer patients. Androgen receptor (AR) signaling in the transmembrane protease serine 2 (TMPRSS2) regulation is emerging as an important determinant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility. In our study, we analyzed AR and TMPRSS2 expression in 17,352 normal and 9,556 cancer tissues from public repositories and stratified data according to sex and age. The emerging picture is that some patient groups may be particularly susceptible to SARS-CoV-2 infection and may benefit from antiandrogen- or tamoxifen-based therapies. These findings are relevant to choose proper treatments in order to protect cancer patients from concomitant SARS-CoV-2 contagion and related symptoms and put forward the idea that hormonal therapies could be used as prophylactic agents against COVID-19.


Assuntos
Antagonistas de Receptores de Andrógenos/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/complicações , COVID-19/complicações , Antagonistas de Estrogênios/uso terapêutico , Neoplasias da Próstata/complicações , Tamoxifeno/uso terapêutico , Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , COVID-19/metabolismo , Descoberta de Drogas , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/análise , Receptores Androgênicos/metabolismo , Serina Endopeptidases/análise , Serina Endopeptidases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Tratamento Farmacológico da COVID-19
14.
Cell Transplant ; 29: 963689720968749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33108902

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. One open question is whether genetics could influence the severity of symptoms. Considering the limited data on cancer patients, we analyzed public data repositories limited to investigate angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) expressions and genetic variants to identify the basis of individual susceptibility to SARS-CoV-2.Gene expression and variant data were retrieved from Tissue Cancer Genome Atlas, Genotype-Tissue Expression, and gnomAD. Differences in gene expression were tested with Mann-Whitney U-test. Allele frequencies of germline variants were explored in different ethnicities, with a special focus on ACE2 variants located in the binding site to SARS-CoV-2 spike protein.The analysis of ACE2 and TMPRSS2 expressions in healthy tissues showed a higher expression in the age class 20 to 59 years (false discovery rate [FDR] < 0.0001) regardless of gender. ACE2 and TMPRSS2 were more expressed in tumors from males than females (both FDR < 0.0001) and, opposite to the regulation in tissues from healthy individuals, more expressed in elderly patients (FDR = 0.005; FDR < 0.0001, respectively). ACE2 and TMPRSS2 expressions were higher in cancers of elderly patients compared with healthy individuals (FDR < 0.0001). Variants were present at low frequency (range 0% to 3%) and among those with the highest frequency, the variant S19P belongs to the SARS-CoV-2 spike protein binding site and it was exclusively present in Africans with a frequency of 0.2%.The mechanisms of ACE2 and TMPRSS2 regulation could be targeted for preventive and therapeutic purposes in the whole population and especially in cancer patients.Further studies are needed to show a direct correlation of ACE2 and TMPRSS2 expressions in cancer patients and the incidence of COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Predisposição Genética para Doença , Neoplasias/patologia , Peptidil Dipeptidase A/genética , Pneumonia Viral/patologia , Serina Endopeptidases/genética , Adulto , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/isolamento & purificação , Sítios de Ligação , População Negra/genética , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/virologia , Bases de Dados Genéticas , Feminino , Frequência do Gene , Variação Genética , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Neoplasias/genética , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Adulto Jovem
15.
Int J Mol Sci ; 21(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979064

RESUMO

Members of the carbonic anhydrase family are functionally involved in the regulation of intracellular and extracellular pH in physiological and pathological conditions. Their expression is finely regulated to maintain a strict control on cellular homeostasis, and it is dependent on the activation of extracellular and intracellular signaling pathways. Combining RNA sequencing (RNA-seq), NanoString, and bioinformatics data, we demonstrated that the expression of carbonic anhydrase 12 (CAXII) is significantly different in luminal and triple negative breast cancer (BC) models and patients, and is associated with the activation of an epithelial mesenchymal transition (EMT) program. In BC models, the phorbol ester 12-myristate 13-acetate (PMA)-mediated activation of protein kinase C (PKC) induced a down-regulation of CAXII with a concomitant modulation of other members of the transport metabolon, including CAIX and the sodium bicarbonate cotransporter 3 (NBCn1). This is associated with a remodeling of tumor glycolytic metabolism induced after PKC activation. Overall, this analysis highlights the dynamic nature of transport metabolom and identifies signaling pathways finely regulating this plasticity.


Assuntos
Anidrases Carbônicas/genética , Transição Epitelial-Mesenquimal/genética , Proteína Quinase C/genética , Adulto , Idoso , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Transdução de Sinais/genética , Simportadores de Sódio-Bicarbonato/genética , Neoplasias de Mama Triplo Negativas/genética
16.
Cancer ; 125(5): 712-725, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30480765

RESUMO

BACKGROUND: Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates with an adverse prognosis. METHODS: To understand the molecular bases of aneuploid acute myeloid leukemia (A-AML), this study examined the genomic profile in 42 A-AML cases and 35 euploid acute myeloid leukemia (E-AML) cases. RESULTS: A-AML was characterized by increased genomic complexity based on exonic variants (an average of 26 somatic mutations per sample vs 15 for E-AML). The integration of exome, copy number, and gene expression data revealed alterations in genes involved in DNA repair (eg, SLX4IP, RINT1, HINT1, and ATR) and the cell cycle (eg, MCM2, MCM4, MCM5, MCM7, MCM8, MCM10, UBE2C, USP37, CK2, CK3, CK4, BUB1B, NUSAP1, and E2F) in A-AML, which was associated with a 3-gene signature defined by PLK1 and CDC20 upregulation and RAD50 downregulation and with structural or functional silencing of the p53 transcriptional program. Moreover, A-AML was enriched for alterations in the protein ubiquitination and degradation pathway (eg, increased levels of UHRF1 and UBE2C and decreased UBA3 expression), response to reactive oxygen species, energy metabolism, and biosynthetic processes, which may help in facing the unbalanced protein load. E-AML was associated with BCOR/BCORL1 mutations and HOX gene overexpression. CONCLUSIONS: These findings indicate that aneuploidy-related and leukemia-specific alterations cooperate to tolerate an abnormal chromosome number in AML, and they point to the mitotic and protein degradation machineries as potential therapeutic targets.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Genômica/métodos , Leucemia Mieloide Aguda/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneuploidia , Ciclo Celular , Bandeamento Cromossômico , Feminino , Dosagem de Genes , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteólise , Sequenciamento do Exoma , Adulto Jovem
17.
Leukemia ; 32(7): 1609-1620, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29472722

RESUMO

Chromothripsis is a one-step genome-shattering catastrophe resulting from disruption of one or few chromosomes in multiple fragments and consequent random rejoining and repair. This study defines incidence of chromothripsis in 395 newly diagnosed adult acute myeloid leukemia (AML) patients from three institutions, its impact on survival and its genomic background. SNP 6.0 or CytoscanHD Array (Affymetrix®) were performed on all samples. We detected chromothripsis with a custom algorithm in 26/395 patients. Patients harboring chromothripsis had higher age (p = 0.002), ELN high risk (HR) (p < 0.001), lower white blood cell (WBC) count (p = 0.040), TP53 loss, and/or mutations (p < 0.001) while FLT3 (p = 0.025), and NPM1 (p = 0.032) mutations were mutually exclusive with chromothripsis. Chromothripsis-positive patients showed a worse overall survival (OS) (p < 0.001) compared with HR patients (p = 0.011) and a poor prognosis in a COX-HR optimal regression model. Chromothripsis presented the hallmarks of chromosome instability [i.e., TP53 alteration, 5q deletion, higher mean of copy number alteration (CNA), complex karyotype, alterations in DNA repair, and cell cycle] and focal deletions on chromosomes 4, 7, 12, 16, and 17. CBA. FISH showed that chromothripsis is associated with marker, derivative, and ring chromosomes. In conclusion, chromothripsis frequently occurs in AML (6.6%) and influences patient prognosis and disease biology.


Assuntos
Cromotripsia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais , Bandeamento Cromossômico , Feminino , Predisposição Genética para Doença , Humanos , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Mutação , Nucleofosmina , Polimorfismo de Nucleotídeo Único , Prognóstico , Modelos de Riscos Proporcionais , Cromossomos em Anel , Resultado do Tratamento , Adulto Jovem
18.
PLoS Negl Trop Dis ; 9(6): e0003829, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039311

RESUMO

BACKGROUND: Dengue virus (DENV) is an extraordinary health burden on global scale, but still lacks effective vaccine. The Philippines is endemic for dengue fever, but massive employment of insecticides favored the development of resistance mutations in its major vector, Aedes aegypti. Alternative vector control strategies consist in releasing artificially modified mosquitos in the wild, but knowledge on their dispersal ability is necessary for a successful implementation. Despite being documented that Ae. aegypti can be passively transported for long distances, no study to date has been aimed at understanding whether human marine transportation can substantially shape the migration patterns of this mosquito. With thousands of islands connected by a dense network of ships, the Philippines is an ideal environment to fill this knowledge gap. METHODOLOGY/PRINCIPAL FINDINGS: Larvae of Ae. aegypti from 15 seaports in seven major islands of central-western Philippines were collected and genotyped at seven microsatellite loci. Low genetic structure and considerable gene flow was found in the area. Univariate and multivariate regression analyses suggested that anthropic factors (specifically the amount of processed cargo and human population density) can explain the observed population structure, while geographical distance was not correlated. Interestingly, cargo shipments seem to be more efficient than passenger ships in transporting Ae. aegypti. Bayesian clustering confirmed that Ae. aegypti from busy ports are more genetically similar, while populations from idle ports are relatively structured, regardless of the geographical distance that separates them. CONCLUSIONS/SIGNIFICANCE: The results confirmed the pivotal role of marine human-mediated long-range dispersal in determining the population structure of Ae. aegypti. Hopefully corroborated by further research, the present findings could assist the design of more effective vector control strategies.


Assuntos
Aedes/fisiologia , Distribuição Animal/fisiologia , Dengue/prevenção & controle , Dengue/transmissão , Ilhas , Navios , Aedes/genética , Animais , Teorema de Bayes , Análise por Conglomerados , Fluxo Gênico , Genótipo , Geografia , Humanos , Larva/fisiologia , Repetições de Microssatélites/genética , Filipinas , Dinâmica Populacional , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA